RAG Technology: Principles, Use Cases & Implementation

 

  

Format 1: Half-day session – Duration: 3h30

Objectives:

  • • Understand how RAG (Retrieval-Augmented Generation) works

  • • Identify relevant use cases (FAQ, chatbot, business assistant)

  • • Build a basic RAG system using accessible tools (OpenAI, LangChain, LlamaIndex)

  •  

Program:

1. Introduction to RAG (45 min)

  • • What is RAG?
    → Principle: document retrieval + response generation

  • • Why use RAG? Overcoming LLM limitations (hallucinations, context boundaries)

  • • Architecture: key components (indexing, retrieval, prompt injection)

  •  

2. Real-Life Use Cases for HR (45 min)

  • • Internal support chatbot (HR or legal knowledge base)

  • • Smart search over business PDFs

  • • Dynamic FAQ over a product corpus

  • • Customer feedback or support ticket analysis with RAG

  •  

3. Simple RAG Implementation (1h30)

  • Example 1: RAG using OpenAI + PDFs (via LangChain or LlamaIndex)
    Steps:
  • • Ingest and vectorize a document (e.g. HR base, product doc)

  • • Embedding via OpenAI or HuggingFace

  • • Vector storage (Chroma, FAISS…)

  • • Query & response with an LLM
  • 🛠️ Workshop: Building useful prompts for managers

  •  

4. Key Considerations (30 min)

  • • GDPR and data privacy

  • • Response quality: re-ranking, chunking, corpus updates

  • • Infrastructure and technical limits

  •  

 

Format 2: Full-day session – Duration: 6h30

Additional Objectives:

  • • Build a full RAG pipeline from scratch with your own corpus

  • • Explore vectorization, scoring strategies, prompt optimization

  • • Learn evaluation and continuous improvement techniques

  •  

Full-Day Program:

Morning:

  • • In-depth RAG architecture and typology
  • • Extended use cases with demos
  • • Hands-on workshop: create a mini-RAG from real documents (PDF, Word, websites)
  • • Tools: LangChain or LlamaIndex + vector DB (Chroma, FAISS)
  •  

Afternoon:


  • 4. Employees: Customizing your AI work environment
  • • Chunk size tuning and overlap management

  • • Context prompt refinement

  • • Adding user feedback or voting systems

  •  
  • Advanced Case:
  • • Multi-source RAG (docs + databases + APIs)

  • • Integration into a chatbot or assistant (Streamlit, Gradio, custom front)

  • • Final team workshop: prototype a RAG applied to a real use case (HR, support, legal)

  •  
  • Debrief & Next Steps:
  • • Hosting a RAG

  • • Evaluating answer quality

  • • Deploying to production (API & frontend integration)

 

Deliverables:

  • • RAG workflow templates (LangChain / LlamaIndex)

  • • Test corpora (PDFs, FAQs, documentation)

  • • Step-by-step tutorials: ingestion, vectorization, querying

  • • Prompt design guide for RAG context
  • • Tooling recommendations for production (servers, vector DBs, security)
  •  

More information? Contact Sophie!

Sophie (2)